If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+y=15
We move all terms to the left:
8y^2+y-(15)=0
a = 8; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·8·(-15)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{481}}{2*8}=\frac{-1-\sqrt{481}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{481}}{2*8}=\frac{-1+\sqrt{481}}{16} $
| -5+8c=43 | | 4t^2-3t-5=3.2 | | 140+5x+20=180 | | 3(2x=7)=39 | | 3(9x-41)=3(3x-5) | | x(x+2)=(x-3)2 | | X-(.35x)=156,000 | | 6(x–5)=90 | | x+(6x+10)+(x+2)=90 | | 8z*z=11z-3 | | 3-5x+7=x+11 | | 8z*8z=11z-3 | | 240-5x=180 | | 14.2=x+3.9 | | 3/4k+3=4 | | 3x+5x+10=3x+40 | | 3r-9=33 | | y/5+0.6=2 | | 57y=8(7y-2 | | 7(z-3)=40 | | L=4000+0.12(t-15) | | 7+3(x-5)=4x+3 | | 5.6-2p=13 | | -60=1.9x | | 939.7706=3.14r^2 | | (19x-49)+(19x-49)+(5x+37)+(5x+37)=360 | | 0.02h+0.08(8-h)=1.78 | | 8+b/4=11 | | -1x=-85 | | 4b+65=117 | | 5^(x+1)=367 | | 7x–2(x+1)+18=8x–11 |